

KNUDE. HANSENA/S NAVAL ARCHITECTS · DESIGNERS · MARINE ENGINEERS

- 1. INTRODUCTION OF KNUD E. HANSEN A/S
- 2. ECO SHIP DESIGN ?
- 3. WHAT IS OUR OPTIONS ?
- 4. TAILOR MADE -KEH DESIGN PHASES ¤ OUR OPTIONS ¤ INITIAL/CONCEPT DESIGN ¤ BASIC DESIGN
- 5. CASES/ESTIMATES ¤ Duct on VLCC and Mid size Tanker
- 6. BANK statements
- 7. QUESTIONS

THE BACKGROUND

WE HAVE PROVIDED TAILOR MADE CONSULTANCY AND DESIGN SERVICES TO THE GLOBAL MARITIME INDUSTRY

SINCE 1937

•MORE THAN 650 VESSELS HAVE BEEN BUILT TO OUR DESIGN

•MORE THAN 400 HULL LINES DEVELOPED AND MODEL TESTED

DESIGN

•MORE THAN 225 CONVERSIONS HAVE BEEN CARRIED OUT TO OUR

•THOUSANDS OF SURVEYS, ONSITE SUPERVISION AND OTHER SERVICES

KNUD E. HANSEN A/S – GLOBAL OFFICES

Geographic Location of Recent Projects

THE KEH CONCEPT

OUR EXPERIENCED STAFF IS THE FOUNDATION OF OUR ACTIVITIES.

MODERN DESIGN TOOLS AND PROJECT PLANNING MAKES KNUD E. HANSEN A/S. A FAST AND RELIABLE PARTNER.

Knud E. Hansen A/S focus:

- BRING ADDED VALUE
- LONG TERM RELATIONSHIP
- DIRECT DIALOGUE AND TAILORED RESPONSE
- COMPETENCE AND QUALITY
- ON-TIME DELIVERY

KEH KEY SERVICES

Knud E. Hansen A/S provides to clients worldwide the following services:

Newbuildings

- General Naval Architecture
- Marine Engineering
- Stability and Safety Engineering
- Structural Engineering
- HVAC Design

General

- Energy optimisation
- Project management
- Inspection and Supervision
- Seatrials and Delivery

VESSELS TYPES

- FERRIES (RO-Pax)
- RO-RO & RO-CON
- TANKERS
- CRUISE VESSELS
- MULTI PURPOSE VESSELS

- MILITARY VESSELS
- CONTAINER VESSELS
- OFFSHORE WIND, OIL & GAS
- YACHTS
- GENERAL CARGO VESSELS

- 6.300 DWT IMO 2 (Internal project)
- 16.000 DWT IMO 2 (Internal project)
- 14.000 DWT ASPHALT/BLACK PRODUCTS
- 14.250 DWT IMO 2
- 19.999 DWT IMO 2 (pending)
- 24.000 DWT IMO 2 (Awaiting financing)
- 45000 cbm LNG Tanker (KEH short listed)
- OPTIMIZING VLCC (FINISHED)

ECO – SHIP DESIGN

WWW.KNUDEHANSEN.COM

0.0

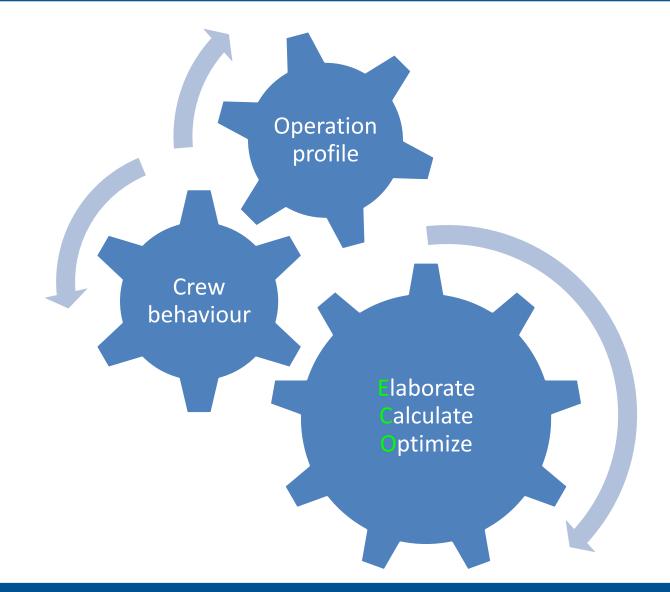
Environmentally Creative Object

Evolving Creative Opportunities

Engineering Change Order

Energy Cost Optimization

Elaborate Calculate Optimize

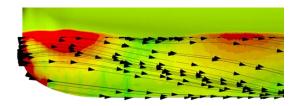

Energy Companies Obligation

THE ECO EQUATION

WHAT IS THE OPTIONS ?

WWW.KNUDEHANSEN.COM

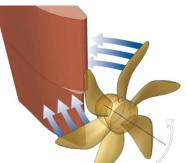
0.0



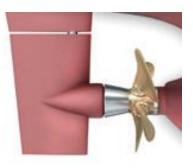
The Ship designers can manage Three of the Five ways to be improve the efficiency of a Vessel operation.

- Reduce the hull resistance in Loaded/Ballast condition
- Increase the propulsion system efficiency
- Improve the power plant efficiency
- _____
- Improve the Crew behavior & operational efficiency
- **OPERATION PROFILE...**Draft, speed, Pool rating, laden/ ballast, operation area

- **Design for available cargo and route** a suitable sized ship gives a higher degree of utilization and a lower lightweight.
- Evaluate Main Dimensions could reduced FO consumption compensate for higher port costs?
- Optimise hull for operational profile get the best overall performing hull by looking at more than only the contract point. Modified hull forms shall be considered
- Optimise hull for low added resistance in waves the sea is rarely flat -a fact which is often overlooked in the design stage.
- Make superstructure more aerodynamic A superstructure shaped for lower resistance doesn't cost much more than the good thoughts.

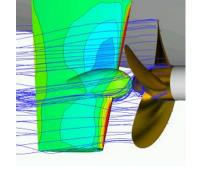


IMPROVING PROPULSION


- Larger propeller diameter / low RPM
- Optimizing for complete propulsion train (SFOC vs RPM vs Propeller)
- Energy Saving Devices (ESD)

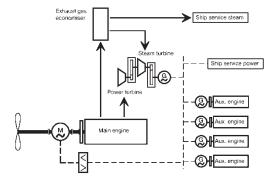
Twisted rudder

HHI Fin


Propeller Cup

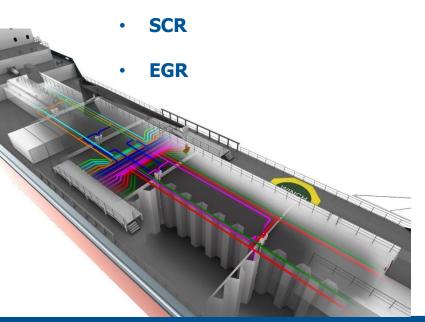
PBCF

Costa bulb


Duct

Pre Swirl Stator

WWW.KNUDEHANSEN.COM

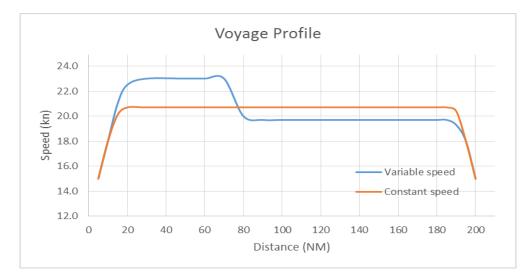

IMPROVING MACHINERY AND SYSTEMS

- De-rating for lower SFOC
- Hybrid drives for better utilization e.g. Shaft Generator
- Electrical power plant
- Automated Demand-driven Control of Machinery and Cargo Systems (e.g. frequency controlled fans, automatic light etc)
- Waste Heat Recovery
- HVAC Optimization
- WB handling

Future options

Scrubber

• Make an efficient layout Reduce time in port by faster loading/unloading.


• Better crew comfort

Better facilities attracts the better crew. Better crew takes more responsibility, understands and involves in new technologies.

- **Monitoring analyse action** Reduce FO consumption by monitoring (consumption, thrust/torque, weather etc), making crew aware, trim optimization, route planning, utilization degree of auxiliaries etc.
- **Better strength / stability** Faster turnaround if there is more flexibility in where cargo can be placed.

Consequence of a 5		5	min delay increases FO consumption by 2.6%			2.6%		
	Round trip	Port call	distance	sailing time		speed	Consu	mption
	hours	hours	nm	hours		knot	t/day	t/trip
Planned	13	3.00	190	10.00	@	19.00	2.03	20.3
Delayed	13	3.08	190	9.92	@	19.16	2.10	20.8
Consequence of establing up aread (Data for 200m DoDo)								

Consequence of catching up speed. (Data for 200m RoRo)

For both voyage profiles the average speed is 19.9 knots and sailing time is $9\frac{1}{2}$ hours.

Additional cost for variable speed curve is 4.8%. (Data for 200m RoRo)

Its about getting the vessel that you need you operation profile is the most important key!

Load condition \rightarrow	Sea	Port	Dynamic positioning
Propeller load (kW)	15,000	0	2-4,000
Electricity production (kW)	900	5,500	3-6,000
Time in service (days/year)	140	55	170

Example						
Harbour hours	per Year		1760			
Ballast voyage	hours per	year	1500			
At Sea hours p	er Year	-	5500			
Sailing time matrix			Draught (m)		
			6	7	8,6	
(Ç	At	sea-%	30	40	30	100
Speed (Kn)	6	35	10	15	10	
8 10 35		35	10	15	10	
<mark>ගි 13 3</mark> 0		10	10	10		
		100				100

Ship operation profile 30 % outside ECA				
	outs.			
	ECA	in ECA	Total	
Days at sea	90	129	219	
Days harbour	45	55	100	
Cargo opr.	20	25	45	
Total	155	209	364	

TAILOR MADE – SHIP DESIGN

WWW.KNUDEHANSEN.COM

0.0

- **DETAILED APPROACH**.....KEH has a very detailed/strong calculation tool which take almost all the variables and risks into account and gives a good support to the decision process.
- **SIMPLIFIED APPROACH....** Another approach is to simplify the decision process; Before starting on each individual Fuel saving devices on a Vessel a general/quick analysis of the fleet is carried out.

DETAILED APPROACH

Estimated assumptions based on history, experience and the vision of the owner regarding the type and condition of the fleet that will be examined.

- New-building or Retrofitted ships or combinations
- Potential investment scenario
- Fuel price
- Variations of fuel price in the future
- Life Cycle period
- Type of market-Freight rates

	4 Cases	Ships number		
		Retrofits	New	
1	All Eco friendly Newbuildings	0	10	
2a	All Retrofits-to become eco-friendly-5 yr old	10	0	
2Ь	All Retrofits-to become eco-friendly-10+15 yr	10	0	
3a	Mix New-Retro(5 yr old)	5	5	
3Ь	Mix New-Retro(10+15 yr old)	5	5	
4	Totally Non Eco-friendly	0	10	

Ship:		
Total nr.ships:	10	
Type of ship:	Tanker	
Enter DWT:	60000	
Enter LWT:	10000	

Fuel:	
Fuel consumption(t/day):	30
Working days/year:	250
Fuel consumption/year(t/year):	7500
Fuel Price(\$/MT):	730

Life study period (years):	25
Select of bulk carrier:	Supramax
Select Route:	Atlantic
Enter T/C rate (\$/day):	10000
Enter Sale price of 5yr old ship(\$):	15000000
Enter Newbuilding price (\$):	20000000

DETAILED APPROACH

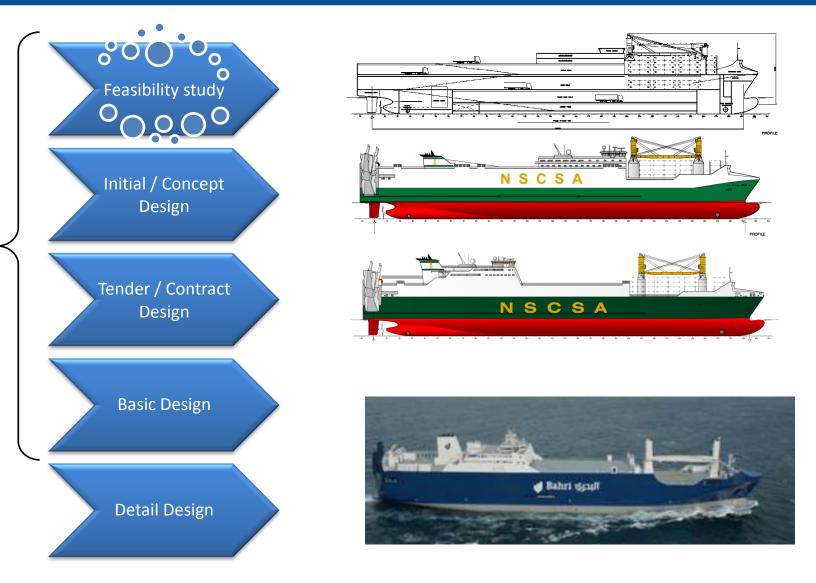
Green technologies that will be applied

Fuel saving Design Technologies

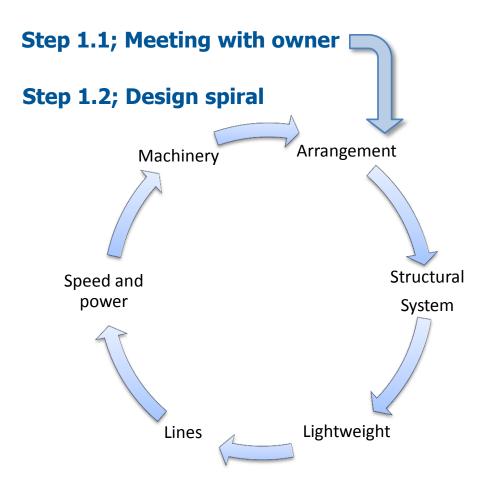
Impoved hull design:		
Hull form optimisation (assymetric body design)	1	0.08
Bulb modification (bulbous bow)		0.04
Design for both calm & seaway operations	1	0.01
Evaluation of added resistance		0.01
Propeller & Rudder design:		
High performance propeller series		0.06
Contra-Rotating podded propulsion concept		0.1
Thruster/Vortex Fins		0.04
Pre-Duct-Mewis Duct		0.06
Pre-Duct-Schneekluth		0.05
Boss-Cap Fins	1	0.03
Rudder Bulbes-Twisted rudders		0.04
Propeller coatings	1	0.04

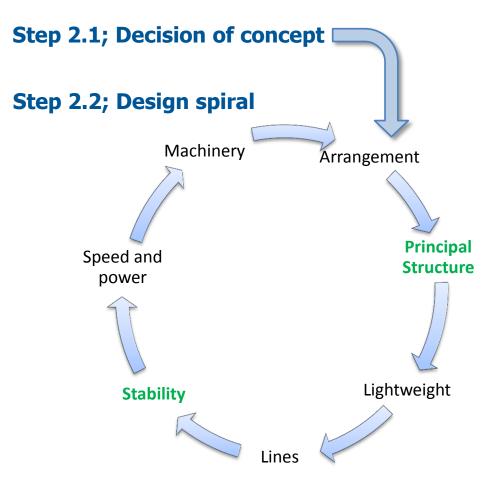
Eco-friendly Operational Technologies

MARPOL VI	Air-pollution:	
	Operational aspects	
	Slow streaming (5% speed reduction)	1 0.13
	Hull cleaning	
	Course keeping ability	
	Manouvering ability	
	Weather Routine	
	Optimum dynamic trim	0.02
	Cold ironing	
	Crew Training	
	On board monitoring for energy efficiency	


Technologies to protect the environment and compliance with future legislations

Ballast Water Co	nvention	
	Ballast water treatment systems(minimum ballast)	1
	Ballast water free design	
MARPOL I	Oil:	
	Dipose off at shore	
	High speed centrifuges	1
	Biodegradable fuels and oils(biodiesel)	
	Water lubed stern tube	
MARPOL IV	Sewage:	
	Dipose off at shore	
	Sewage treatment system	1
	Membrane bioreactors	
	Vacuum toilets	
MARPOL V	Garbage:	
	Dispose off at shore	
	Waste compressors	
	Incinerators (also for heat recovery)	1


TAILOR MADE - KEH DESIGN PHASES


Step 1.3; Meeting / presentation

Purpose for this stage is to find the most suitable vessel only concentrating on major items.

Design criteria's as max dimensions, capacity, speed, operation profile to be discussed with Owner.

This stage has high focus on:

- General arrangement
 - Tank configuration
 - Cargo handling philosophy
- Machinery configuration analysis
- Optimum main dimension analysis
- Future legislation

Step 2.3; Meeting / presentation

After the concept has been decided all previous documentation will be updated and detailed.

This stage will introduce new documentation;

- General Arrangement
 - Ventilation
 - Accommodation
 - Rescue / escape
 - Etc...
- Engine room arrangement
- Electrical power configuration
- Midship Section
- Intact and damage stability
- Specification

EXSISTING VESSELS....Simplified approach

WWW.KNUDEHANSEN.COM

0.0

QUANTIFY AMOUNTS OF USD.....EXAMPLES

VLCC 300.000		Aframax 110.000	
SFOC-Sea	175g/kWh	Design optimize-2%	224.693 USD/year
		Design optimize-6%	674.078 USD/year
SFOC-Harbour	200g/kWh	Design optimize-10%	1.123.463 USD/year
Power cons. At Sea	22.050 kW/hr	Handymax 50.000	
Deuren eene Herkeur	FOOLW/hr	Design optimize-2%	115.970 USD/year
Power cons. Harbour	500 kW/hr	Design optimize-6%	347.911 USD/year
Days in Sea	295 days	Design optimize-10%	579.852 USD/year
Days in Harbour	70 days		
		Handysize 30.000	
Fuel cost-HFO	650USD/ton	Design optimize-2%	86.978 USD/year
		Design optimize-6%	260.934 USD/year
Fuel cost-Lo-S	950 USD/ton	Design optimize-10%	434.889 USD/year
Avg. daily Cons	92,61 ton/day	Handysize 19.999	
Basis cost-Sea	17.757.967 USD/year	Design optimize-2%	50.737 USD/year
	17.757.567 6567 year	Design optimize-6%	152.211 USD/year
Basis cost-Harbour	159.600 USD/year	Design optimize-10%	253.685 USD/year
Total cost	17.917.567 USD/year	6.500	
Design optimize-2%	355.159 USD/year	Design optimize-2%	36.241 USD/year
Design optimize-6%	1.065.478 USD/year	Design optimize-6%	108.722 USD/year
Design optimize-10%	1.775.797 USD/year	Design optimize-10%	181.204 USD/year

Largest contributors for reducing FO consumption:

- Operation: Monitoring Analyzing Action
- Hull and propeller cleaning
- Energy Saving Devices
- Trim optimization (CFD or modeltest)
- Cargo ventilation / HVAC
- Optimization of other systems (pumps, cooling etc)

In case of changed design point (slow steaming):

- Lines change, savings up to 6%
- De-rating of ME, savings up to 6%
- Propeller replacement, savings up to 5%

CASE STORY

VLCC – Simplified approach

Client require

- Min. 5 % saved 6 Vessels ROI max. 1 Years Vessel must not be taken out of Service
- Quantified amounts of USD equal to 5 % saved = approx. 900 kUSD/Year
- Which ESD option may be available for retrofit during scheduled dry docking or in-service:
- -Waste heat recovery would technical be feasible but did not comply with ROI request
- -Duct considered feasible

Preliminary budget: Duct maker Design fee 175k USD

	Duct – Materials	500k USD/Vessel
	Project handling	25k USD
	Finance cost	20k USD/Vessel
Total cost/Vessel		555k USD/Vessel → Retrofit case valid

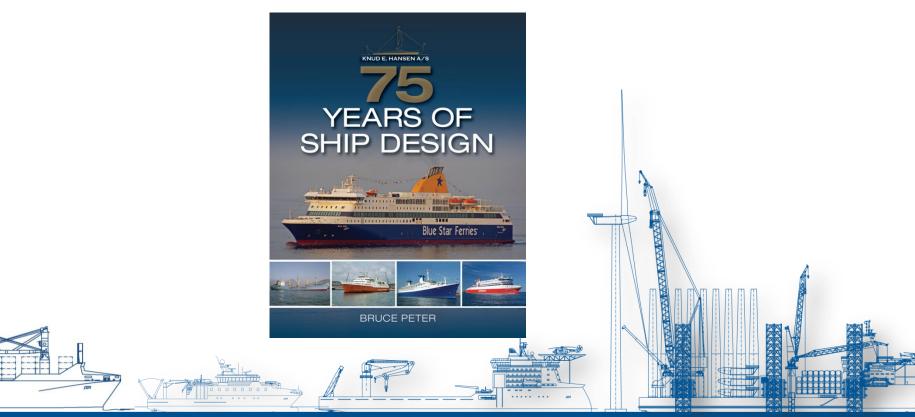
Model test results has shown 6-10% saving (depending on speed and trim)

Fitting duct would also be applicable for New buildings same as waste heat recovery (ROI >1 year)

BANKS

WWW.KNUDEHANSEN.COM

0.0


\$\$\$...Project management capacity of owner \$\$\$...Project improves consumption ranking to first 30% of peer group \$\$\$...Vessel operating in the "right" market segment \$\$\$...Expected improvements are plausible / realistic (independent confirmation) \$\$\$...Payback period 12 – 18 months \$\$\$...Suitable financing volume (usually more than one ship, sister ships, fleet programs etc.) \$\$\$...Timing: Retrofitting during first dry docking

- New buildings "unbeatable" by existing fleet
- Provide good financing opportunities for bank
- But: New buildings are a threat to the bank's shipping portfolio

KNUDE. HANSENA/S NAVAL ARCHITECTS • DESIGNERS • MARINE ENGINEERS

THANK YOU FOR YOUR KIND ATTENTION

WWW.KNUDEHANSEN.COM

This report is property of Knud E. Hansen A/S. No part of it may be circulated, quoted, or reproduced for distribution without prior written approval from Knud E. Hansen A/S. Copyright © Knud E/ Hansen 2012

BRIAN BENDER MADSEN

Head of Machinery and Systems Segment Responsible General Cargo Vessels

+45 27 89 26 77 Mobile:

Email : bbm@knudehansen.com

Skype : bbm-keh

0.0

KNUD E. HANSEN A/S Naval Architects - Designers - Marine Engineers www.knudehansen.com

...